Reprint

ISSN 0973-9424

INTERNATIONAL JOURNAL OF MATHEMATICAL SCIENCES AND ENGINEERING APPLICATIONS

(IJMSEA)

www.ascent-journals.com

International J. of Math. Sci. & Engg. Appls. (IJMSEA) ISSN 0973-9424, Vol. 17 No. II (December, 2023), pp. 17-23

COMMON MINIMAL EQUITABLE DOMIATING SYMMETRIC *n*-SIGRAPHS

P. GAYATHRI

Department of Mathematics, Government First Grade College, Sullia- 574 239, India.

Abstract

In this paper, we define the common minimal equitable dominating symmetric *n*-sigraph of a given symmetric *n*-sigraph and offer a structural characterization of common minimal equitable dominating symmetric *n*-sigraphs. In the sequel, we also obtained switching equivalence characterization $\overline{S_n} \sim CMED(S_n)$ where $\overline{S_n}$ and $CMED(S_n)$ are complementary symmetric *n*-sigraph and common minimal equitable dominating symmetric *n*-sigraph of a symmetric *n*-sigraph S_n respectively.

1. Introduction

Unless mentioned or defined otherwise, for all terminology and notion in graph theory the reader is refer to [2]. We consider only finite, simple graphs free from self-loops.

Let $n \ge 1$ be an integer. An *n*-tuple $(a_1, a_2, ..., a_n)$ is symmetric, if $a_k = a_{n-k+1}, 1 \le k \le n$. Let $H_n = \{(a_1, a_2, ..., a_n) : a_k \in \{+, -\}, a_k = a_{n-k+1}, 1 \le k \le n\}$ be the set of

Key Words and Phrases : Symmetric n-sigraph, Symmetric n-marked graph, Balance, Switching, Common minimal equitable dominating symmetric n-sigraphs, Complementation.
2000 AMS Subject Classification : 05C22.

© http://www.ascent-journals.com

all symmetric *n*-tuples. Note that H_n is a group under coordinate wise multiplication, and the order of H_n is 2^m , where $m = \lceil \frac{n}{2} \rceil$.

A symmetric n-sigraph (symmetric n-marked graph) is an ordered pair $S_n = (G, \sigma)$ $(S_n = (G, \mu))$, where G = (V, E) is a graph called the *underlying graph* of S_n and $\sigma : E \to H_n$ ($\mu : V \to H_n$) is a function.

In this paper by an *n*-tuple/*n*-sigraph/*n*-marked graph we always mean a symmetric *n*-tuple/symmetric *n*-sigraph/symmetric *n*-marked graph.

An *n*-tuple $(a_1, a_2, ..., a_n)$ is the *identity n*-tuple, if $a_k = +$, for $1 \le k \le n$, otherwise it is a *non-identity n*-tuple. In an *n*-sigraph $S_n = (G, \sigma)$ an edge labelled with the identity *n*-tuple is called an *identity edge*, otherwise it is a *non-identity edge*.

Further, in an *n*-sigraph $S_n = (G, \sigma)$, for any $A \subseteq E(G)$ the *n*-tuple $\sigma(A)$ is the product of the *n*-tuples on the edges of A.

In [8], the authors defined two notions of balance in *n*-sigraph $S_n = (G, \sigma)$ as follows (See also R. Rangarajan and P.S.K.Reddy [4]).

Definition : Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then,

- (i) S_n is *identity balanced* (or *i-balanced*), if product of *n*-tuples on each cycle of S_n is the identity *n*-tuple, and
- (ii) S_n is balanced, if every cycle in S_n contains an even number of non-identity edges.

Note: An *i*-balanced *n*-sigraph need not be balanced and conversely.

The following characterization of i-balanced n-sigraphs is obtained in [8].

Theorem 1.1 (*E. Sampathkumar et al.* [8]) : An *n*-sigraph $S_n = (G, \sigma)$ is ibalanced if, and only if, it is possible to assign *n*-tuples to its vertices such that the *n*-tuple of each edge uv is equal to the product of the *n*-tuples of u and v.

In [8], the authors also have defined switching and cycle isomorphism of an *n*-sigraph $S_n = (G, \sigma)$ as follows: (See also [3], [5-7], [10-15], [17-21]).

Let $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$, be two *n*-sigraphs. Then S_n and S'_n are said to be *isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that if uv is an edge in S_n with label $(a_1, a_2, ..., a_n)$ then $\phi(u)\phi(v)$ is an edge in S'_n with label $(a_1, a_2, ..., a_n)$.

Given an *n*-marking μ of an *n*-sigraph $S_n = (G, \sigma)$, switching S_n with respect to μ is the operation of changing the *n*-tuple of every edge uv of S_n by $\mu(u)\sigma(uv)\mu(v)$. The *n*- sigraph obtained in this way is denoted by $S_{\mu}(S_n)$ and is called the μ -switched n-sigraph or just switched n-sigraph.

Further, an *n*-sigraph S_n switches to *n*-sigraph S'_n (or that they are switching equivalent to each other), written as $S_n \sim S'_n$, whenever there exists an *n*-marking of S_n such that $\mathcal{S}_{\mu}(S_n) \cong S'_n$.

Two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ are said to be *cycle isomorphic*, if there exists an isomorphism $\phi : G \to G'$ such that the *n*-tuple $\sigma(C)$ of every cycle C in S_n equals to the *n*-tuple $\sigma(\phi(C))$ in S'_n .

We make use of the following known result (see [8]).

Theorem 1.2 (*E. Sampathkumar et al.* [8]): Given a graph G, any two *n*-sigraphs with G as underlying graph are switching equivalent if, and only if, they are cycle isomorphic.

Let $S_n = (G, \sigma)$ be an *n*-sigraph. Consider the *n*-marking μ on vertices of S defined as follows: each vertex $v \in V$, $\mu(v)$ is the product of the *n*-tuples on the edges incident at v. Complement of S is an *n*-sigraph $\overline{S_n} = (\overline{G}, \sigma')$, where for any edge $e = uv \in \overline{G}$, $\sigma'(uv) = \mu(u)\mu(v)$. Clearly, $\overline{S_n}$ as defined here is an *i*-balanced *n*-sigraph due to Theorem 1.1.

2. Common Minimal Equitable Dominating *n*-Sigraph of an *n*-Sigraph

A subset D of $V(\Gamma)$ is called an *equitable dominating set* of a graph Γ , if for every $v \in V - D$ there exists a vertex $v \in D$ such that $uv \in E(\Gamma)$ and $|d(u) - d(v)| \leq 1$. The minimum cardinality of such a dominating set is denoted by γ_e and is called equitable domination number of Γ . An equitable dominating set D is *minimal*, if for any vertex $u \in D$, $D - \{u\}$ is not a equitable dominating set of Γ . This concept was introduced by Deepak et al. [1].

In [1], the authors introduced a new class of intersection graphs in the field of domination theory. The common minimal equitable dominating graph is denoted by $CMED(\Gamma)$ is the graph which has the same vertex set as Γ with two vertices are adjacent if and only if there exist minimal equitable dominating in Γ containing them.

In this paper, we introduce a natural extension of the notion of common minimal equitable dominating graph to the realm of n-sigraphs since this appears to have interesting connections with complementary n-sigraph. The common minimal equitable dominating n-sigraph $CMED(S_n)$ of an n-sigraph $S_n = (G, \sigma)$ is an n-sigraph whose underlying graph is CMED(G) and the n-tuple of any edge uv in $CMED(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical n-marking of S_n . Further, an n-sigraph $S_n = (G, \sigma)$ is called common minimal equitable dominating n-sigraph, if $S_n \cong CMED(S'_n)$ for some n-sigraph S'_n . In this paper we will give a structural characterization of n-sigraphs which are common minimal equitable dominating n-sigraphs.

The following result indicates the limitations of the notion $CMED(S_n)$ introduced above, since the entire class of *i*-unbalanced *n*-sigraphs is forbidden to be common minimal equitable dominating *n*-sigraphs.

Theorem 2.1: For any *n*-sigraph $S_n = (G, \sigma)$, its common minimal equitable dominating *n*-sigraph $CMED(S_n)$ is *i*-balanced.

Proof: Since the *n*-tuple of any edge uv in $CMED(S_n)$ is $\mu(u)\mu(v)$, where μ is the canonical *n*-marking of S_n , by Theorem 1.1, $CMED(S_n)$ is *i*-balanced. \Box For any positive integer k, the k^{th} iterated common minimal equitable dominating *n*-sigraph $CMED(S_n)$ of S_n is defined as follows:

$$(CMED)^0(S_n) = S_n, (CMED)^k(S_n) = CMED((CMED)^{k-1}(S_n)).$$

Corollary 2.2: For any *n*-sigraph $S_n = (G, \sigma)$ and any positive integer k, $(CMED)^k(S_n)$ is *i*-balanced.

The following result characterize n-sigraphs which are common minimal equitable dominating n-sigraphs.

Theorem 2.2: An *n*-sigraph $S_n = (G, \sigma)$ is a common minimal equitable dominating *n*-sigraph if, and only if, S_n is *i*-balanced *n*-sigraph and its underlying graph *G* is a common minimal equitable dominating graph.

Proof : Suppose that S_n is *i*-balanced and G is a CMED(G). Then there exists a graph H such that $CMED(H) \cong G$. Since S_n is *i*-balanced, by Theorem 1.1, there exists an *n*-marking μ of G such that each edge uv in S_n satisfies $\sigma(uv) = \mu(u)\mu(v)$. Now consider the *n*-sigraph $S'_n = (H, \sigma')$, where for any edge e in H, $\sigma'(e)$ is the *n*-marking of the corresponding vertex in G. Then clearly, $CMED(S'_n) \cong S_n$. Hence S_n is a common minimal equitable dominating *n*-sigraph.

Conversely, suppose that $S_n = (G, \sigma)$ is a common minimal equitable dominating *n*-sigraph. Then there exists an *n*-sigraph $S'_n = (H, \sigma')$ such that $CMED(S'_n) \cong S_n$.

Hence G is the CMED(G) of H and by Theorem 2.1, S_n is *i*-balanced.

In [1], the authors characterized graphs for which $CMED(G) \cong \overline{G}$.

Theorem 2.3 (G. Deepak et al. [1]): For any graph G = (V, E), $CMED(G) \cong \overline{G}$ if and only if every minimal equitable dominating set of G is independent.

We now characterize n-sigraphs whose common minimal equitable dominating n-sigraphs and complementary n-sigraphs are switching equivalent.

Theorem 2.4: For any *n*-sigraph $S_n = (G, \sigma)$, $\overline{S_n} \sim CMED(S_n)$ if, and only if, every minimal equitable dominating set of G is independent.

Proof : Suppose $\overline{S_n} \sim CMED(S_n)$. This implies, $\overline{S_n} \cong CMED(S_n)$ and hence by Theorem 2.4, every minimal equitable dominating set of G is independent.

Conversely, suppose that every minimal equitable dominating set of G is independent. Then $\overline{S_n} \cong CMED(S_n)$ by Proposition 2.4. Now, if S_n is an *n*-sigraph with every minimal equitable dominating set of underlying graph G is independent, by the definition of complementary *n*-sigraph and Theorem 2.1, $\overline{S_n}$ and $CMED(S_n)$ are *i*-balanced and hence, the result follows from Theorem 1.2.

Theorem 2.5: For any two *n*-sigraphs S_n and S'_n with the same underlying graph, their common minimal equitable dominating *n*-sigraphs are switching equivalent.

Proof: Suppose $Sn = (G, \sigma)$ and $S'_n = (G', \sigma')$ be two *n*-sigraphs with $G \cong G'$. By Theorem 2.1, $CMED(S_n)$ and $CMED(S'_n)$ are *i*-balanced and hence, the result follows from Theorem 1.2.

In any $m \in H_n$, the *m*-complement of $a = (a_1, a_2, ..., a_n)$ is: $a^m = am$. For any $M \subseteq H_n$, and $m \in H_n$, the *m*-complement of M is $M^m = \{a^m : a \in M\}$.

For any $m \in H_n$, the *m*-complement of an *n*-sigraph $S_n = (G, \sigma)$, written (S_n^m) , is the same graph but with each edge label $a = (a_1, a_2, ..., a_n)$ replaced by a^m .

For an *n*-sigraph $S_n = (G, \sigma)$, the $CMED(S_n)$ is *i*-balanced. We now examine, the condition under which *m*-complement of $CMED(S_n)$ is *i*-balanced, where for any $m \in H_n$. For an *n*-sigraph $S_n = (G, \sigma)$, the $CMED(S_n)$ is *i*-balanced. We now examine, the conditions under which *m*-complement of $CMED(S_n)$ is *i*-balanced, where for any $m \in H_n$.

Theorem 2.6: Let $S_n = (G, \sigma)$ be an *n*-sigraph. Then, for any $m \in H_n$, if CMED(G) is bipartite then $(CMED(S_n))^m$ is *i*-balanced.

Proof : Since, by Theorem 2.1, $CMED(S_n)$ is *i*-balanced, for each $k, 1 \leq k \leq n$,

the number of *n*-tuples on any cycle C in $CMED(S_n)$ whose k^{th} co-ordinate are - is even. Also, since CMED(G) is bipartite, all cycles have even length; thus, for each k, $1 \le k \le n$, the number of *n*-tuples on any cycle C in $CMED(S_n)$ whose k^{th} co-ordinate are + is also even. This implies that the same thing is true in any *m*-complement, where for any $m, \in H_n$. Hence $(CMED(S_n))^t$ is *i*-balanced. \Box

Theorem 2.5 & 2.6 provides easy solutions to other *n*-sigraph switching equivalence relations, which are given in the following results.

Corollary 2.7: For any *n*-sigraph $S_n = (G, \sigma)$, $\overline{(S_n)^m} \sim CMED(S_n)$ if, and only if, every minimal equitable dominating set of G is independent.

Corollary 2.8: For any *n*-sigraph $S_n = (G, \sigma)$, $\overline{S_n} \sim CMED((S_n)^m)$ if, and only if, every minimal equitable dominating set of G is independent.

Corollary 2.9: For any *n*-sigraph $S_n = (G, \sigma), \overline{(S_n)^m} \sim CMED((S_n)^m)$ if, and only if, every minimal equitable dominating set of G is independent.

Corollary 2.10: For any two *n*-sigraphs S_n and S'_n with the same underlying graph, $CMED(S_n)$ and $CMED((S'_n)^m)$ are switching equivalent.

Corollary 2.11: For any two *n*-sigraphs S_n and S'_n with the same underlying graph, $CMED((S_n)^m)$ and $CMED(S'_n)$ are switching equivalent.

Corollary 2.12: For any two *n*-sigraphs S_n and S'_n with the same underlying graph, $CMED((S_n)^m)$ and $CMED((S'_n)^m)$ are switching equivalent.

Corollary 2.13: For any two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $(CMED(S_n))^m$ and $CMED(S'_n)$ are switching equivalent.

Corollary 2.14: For any two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $CMED(S_n)$ and $(CMED(S'_n))^m$ are switching equivalent.

Corollary 2.15: For any two *n*-sigraphs $S_n = (G, \sigma)$ and $S'_n = (G', \sigma')$ with the $G \cong G'$ and G, G' are bipartite, $(CMED(S_1))^m$ and $(CMED(S_2))^m$ are switching equivalent.

References

- Deepak G., Soner N. D. and Alwardi A., Vertex minimal and common minimal equitable dominating graphs, Int. J. Contemp. Math. Sciences, 7(10) (2012), 499-505.
- [2] Harary F., Graph Theory, Addison-Wesley Publishing Co., (1969).
- [3] Lokesha V., Reddy P. S. K. and Vijay S., The triangular line n-sigraph of a symmetric n-sigraph, Advn. Stud. Contemp. Math., 19(1) (2009), 123-129.

- [4] Rangarajan R. and Reddy P. S. K., Notions of balance in symmetric n-sigraphs, Proceedings of the Jangjeon Math. Soc., 11(2) (2008), 145-151.
- [5] Rangarajan R., Reddy P. S. K. and Subramanya M. S., Switching Equivalence in Symmetric n-Sigraphs, Adv. Stud. Comtemp. Math., 18(1) (2009), 79-85.
 R.
- [6] Rangarajan R., Reddy P. S. K. and Soner N. D., Switching equivalence in symmetric n-sigraphs-II, J. Orissa Math. Sco., 28 (1 & 2) (2009), 1-12.
- [7] Rangarajan R., Reddy P. S. K. and Soner N. D., mth Power Symmetric n-Sigraphs, Italian Journal of Pure & Applied Mathematics, 29(2012), 87-92.
- [8] Sampathkumar E., Reddy P. S. K., and Subramanya M. S., Jump symmetric n-sigraph, Proceedings of the Jangjeon Math. Soc., 11(1) (2008), 89-95.
- [9] Sampathkumar E., Reddy P. S. K. and Subramanya M. S., The Line n-sigraph of a symmetric n-sigraph, Southeast Asian Bull. Math., 34(5) (2010), 953-958.
- [10] Reddy P. S. K. and Prashanth B., Switching equivalence in symmetric nsigraphs-I, Advances and Applications in Discrete Mathematics, 4(1) (2009), 25-32.
- [11] Reddy P. S. K.y, Vijay S. and Prashanth B., The edge C_4 *n*-sigraph of a symmetric *n*-sigraph, Int. Journal of Math. Sci. & Engg. Appls., 3(2) (2009), 21-27.
- [12] Reddy P. S. K., Lokesha V. and Gurunath Rao Vaidya, The Line *n*-sigraph of a symmetric *n*-sigraph-II, Proceedings of the Jangjeon Math. Soc., 13(3) (2010), 305-312.
- [13] Reddy P. S. K., Lokesha V. and Gurunath Rao Vaidya, The Line *n*-sigraph of a symmetric *n*-sigraph-III, Int. J. Open Problems in Computer Science and Mathematics, 3(5) (2010), 172-178.
- [14] Reddy P. S. K., Lokesha V. and Gurunath Rao Vaidya, Switching equivalence in symmetric *n*-sigraphs-III, Int. Journal of Math. Sci. & Engg. Appls., 5(1) (2011), 95-101.
- [15] Reddy P. S. K., Prashanth B. and Kavita. S. Permi, A Note on Switching in Symmetric *n*-Sigraphs, Notes on Number Theory and Discrete Mathematics, 17(3) (2011), 22-25.
- [16] Reddy P. S. K., Gurunath Rao Vaidya and A. Sashi Kanth Reddy, Neighborhood symmetric n-sigraphs, Scientia Magna, 7(2) (2011), 99-105.
- [17] Reddy P. S. K., Geetha M. C. and Rajanna K. R., Switching Equivalence in Symmetric n-Sigraphs-IV, Scientia Magna, 7(3) (2011), 34-38.
- [18] Reddy P. S. K., Nagaraja K. M. and Geetha M. C., The Line *n*-sigraph of a symmetric *n*-sigraph-IV, International J. Math. Combin., 1 (2012), 106-112.
- [19] Reddy P. S. K., Geetha M. C. and Rajanna K. R., Switching equivalence in symmetric n-sigraphs-V, International J. Math. Combin., 3 (2012), 58-63.
- [20] Reddy P. S. K., Nagaraja K. M. and Geetha M. C., The Line n-sigraph of a symmetric n-sigraph-V, Kyungpook Mathematical Journal, 54(1) (2014), 95-101.
- [21] Reddy P. S. K., Rajendra R. and Geetha M. C., Boundary n-Signed Graphs, Int. Journal of Math. Sci. & Engg. Appls., 10(2) (2016), 161-168.